DataHub GraphQL CLI
The datahub graphql
command provides a powerful interface to interact with DataHub's GraphQL API directly from the command line. This enables you to query metadata, perform mutations, and explore the GraphQL schema without writing custom applications.
Quick Start
# Get current user info
datahub graphql --operation me
# Search for datasets
datahub graphql --operation searchAcrossEntities --variables '{"input": {"query": "users", "types": ["DATASET"]}}'
# Execute raw GraphQL
datahub graphql --query "query { me { username } }"
Core Features
1. Schema Discovery
Discover available operations and understand their structure:
# List all available operations
datahub graphql --list-operations
# List only queries or mutations
datahub graphql --list-queries
datahub graphql --list-mutations
2. Smart Description
The --describe
command intelligently searches for both operations and types:
# Describe an operation
datahub graphql --describe searchAcrossEntities
# Describe a GraphQL type
datahub graphql --describe SearchInput
# Describe enum types to see allowed values
datahub graphql --describe FilterOperator
When both operation and type exist with same name:
datahub graphql --describe someConflictingName
# Output:
# === OPERATION ===
# Operation: someConflictingName
# Type: Query
# ...
#
# === TYPE ===
# Type: someConflictingName
# Kind: INPUT_OBJECT
# ...
3. Recursive Type Exploration
Use --recurse
with --describe
to explore all nested types:
# Explore operation with all its input types
datahub graphql --describe searchAcrossEntities --recurse
# Explore type with all nested dependencies
datahub graphql --describe SearchInput --recurse
Example recursive output:
Operation: searchAcrossEntities
Type: Query
Description: Search across all entity types
Arguments:
- input: SearchInput!
Input Type Details:
SearchInput:
query: String
types: [EntityType!]
filters: SearchFilter
SearchFilter:
criteria: [FacetFilterInput!]
FacetFilterInput:
field: String! - Name of field to filter by
values: [String!]! - Values, one of which the intended field should match
condition: FilterOperator - Condition for the values
FilterOperator:
EQUAL - Represents the relation: field = value
GREATER_THAN - Represents the relation: field > value
LESS_THAN - Represents the relation: field < value
4. Operation Execution
Execute operations by name without writing full GraphQL:
# Execute operation by name
datahub graphql --operation me
# Execute with variables
datahub graphql --operation searchAcrossEntities --variables '{"input": {"query": "datasets", "types": ["DATASET"]}}'
# Execute with variables from file
datahub graphql --operation createGroup --variables ./group-data.json
5. Raw GraphQL Execution
Execute any custom GraphQL query or mutation:
# Simple query
datahub graphql --query "query { me { username } }"
# Query with variables
datahub graphql --query "query GetUser($urn: String!) { corpUser(urn: $urn) { info { email } } }" --variables '{"urn": "urn:li:corpuser:john"}'
# Query from file
datahub graphql --query ./complex-query.graphql --variables ./variables.json
# Mutation
datahub graphql --query "mutation { addTag(input: {resourceUrn: \"urn:li:dataset:...\", tagUrn: \"urn:li:tag:Important\"}) }"
6. File Support
Both queries and variables can be loaded from files:
# Load query from file
datahub graphql --query ./queries/search-datasets.graphql
# Load variables from file
datahub graphql --operation searchAcrossEntities --variables ./variables/search-params.json
# Both from files
datahub graphql --query ./query.graphql --variables ./vars.json
7. LLM-Friendly JSON Output
Use --format json
to get structured JSON output perfect for LLM consumption:
# Get operations as JSON for LLM processing
datahub graphql --list-operations --format json
# Describe operation with complete type information
datahub graphql --describe searchAcrossEntities --recurse --format json
# Get type details in structured format
datahub graphql --describe SearchInput --format json
Example JSON output for --list-operations --format json
:
{
"schema": {
"queries": [
{
"name": "me",
"type": "Query",
"description": "Get current user information",
"arguments": []
},
{
"name": "searchAcrossEntities",
"type": "Query",
"description": "Search across all entity types",
"arguments": [
{
"name": "input",
"type": {
"kind": "NON_NULL",
"ofType": {
"name": "SearchInput",
"kind": "INPUT_OBJECT"
}
},
"required": true,
"description": "Search input parameters"
}
]
}
],
"mutations": [...]
}
}
Example JSON output for --describe searchAcrossEntities --recurse --format json
:
{
"operation": {
"name": "searchAcrossEntities",
"type": "Query",
"description": "Search across all entity types",
"arguments": [...]
},
"relatedTypes": {
"SearchInput": {
"name": "SearchInput",
"kind": "INPUT_OBJECT",
"fields": [
{
"name": "query",
"type": {"name": "String", "kind": "SCALAR"},
"description": "Search query string"
},
{
"name": "filters",
"type": {"name": "SearchFilter", "kind": "INPUT_OBJECT"},
"description": "Optional filters"
}
]
},
"SearchFilter": {...},
"FilterOperator": {
"name": "FilterOperator",
"kind": "ENUM",
"values": [
{
"name": "EQUAL",
"description": "Represents the relation: field = value",
"deprecated": false
}
]
}
},
"meta": {
"query": "searchAcrossEntities",
"recursive": true
}
}
8. Custom Schema Path
When introspection is disabled or for local development:
# Use local GraphQL schema files
datahub graphql --list-operations --schema-path ./local-schemas/
# Describe with custom schema
datahub graphql --describe searchAcrossEntities --schema-path ./graphql-schemas/
# Get JSON format with custom schema
datahub graphql --list-operations --schema-path ./schemas/ --format json
Command Reference
Global Options
Option | Type | Description |
---|---|---|
--query | string | GraphQL query/mutation string or path to .graphql file |
--variables | string | Variables as JSON string or path to .json file |
--operation | string | Execute named operation from DataHub's schema |
--describe | string | Describe operation or type (searches both) |
--recurse | flag | Recursively explore nested types with --describe |
--list-operations | flag | List all available operations |
--list-queries | flag | List available query operations |
--list-mutations | flag | List available mutation operations |
--schema-path | string | Path to GraphQL schema files directory |
--no-pretty | flag | Disable pretty-printing of JSON output (default: pretty-print) |
--format | choice | Output format: human (default) or json for LLM consumption |
Usage Patterns
# Discovery
datahub graphql --list-operations
datahub graphql --describe <name> [--recurse]
# Execution
datahub graphql --operation <name> [--variables <json>]
datahub graphql --query <graphql> [--variables <json>]
Advanced Examples
Complex Search with Filters
datahub graphql --operation searchAcrossEntities --variables '{
"input": {
"query": "customer",
"types": ["DATASET", "DASHBOARD"],
"filters": [{
"field": "platform",
"values": ["mysql", "postgres"]
}],
"start": 0,
"count": 20
}
}'
Adding Tags to Multiple Entities
# Add Important tag to a dataset
datahub graphql --query 'mutation AddTag($input: TagAssociationInput!) {
addTag(input: $input)
}' --variables '{
"input": {
"resourceUrn": "urn:li:dataset:(urn:li:dataPlatform:mysql,db.users,PROD)",
"tagUrn": "urn:li:tag:Important"
}
}'
Batch User Queries
# Get multiple users using raw GraphQL
datahub graphql --query 'query GetUsers($urns: [String!]!) {
users: batchGet(urns: $urns) {
... on CorpUser {
urn
username
properties {
email
displayName
}
}
}
}' --variables '{"urns": ["urn:li:corpuser:alice", "urn:li:corpuser:bob"]}'
Schema Introspection
DataHub's GraphQL CLI provides two modes for schema discovery:
Schema Discovery Modes
- Live Introspection (default): Queries the live GraphQL endpoint when no
--schema-path
is provided - Local Schema Files: Uses
.graphql
files from the specified directory when--schema-path
is provided
Note: These modes are mutually exclusive with no fallback between them. If introspection fails, the command will fail with an error. If local schema files are invalid, the command will fail with an error.
Schema File Structure
When using --schema-path
, the directory should contain .graphql
files with:
# queries.graphql
extend type Query {
me: AuthenticatedUser
searchAcrossEntities(input: SearchInput!): SearchResults
}
# mutations.graphql
extend type Mutation {
addTag(input: TagAssociationInput!): String
deleteEntity(urn: String!): String
}
Error Handling
The CLI provides clear error messages for common issues:
# Operation not found
datahub graphql --describe nonExistentOp
# Error: 'nonExistentOp' not found as an operation or type. Use --list-operations to see available operations or try a specific type name.
# Missing required arguments
datahub graphql --operation searchAcrossEntities
# Error: Operation 'searchAcrossEntities' requires arguments: input. Provide them using --variables '{"input": "value", ...}'
# Invalid JSON variables
datahub graphql --operation me --variables '{invalid json}'
# Error: Invalid JSON in variables: Expecting property name enclosed in double quotes
Output Formats
Pretty Printing (Default)
{
"me": {
"corpUser": {
"urn": "urn:li:corpuser:datahub",
"username": "datahub"
}
}
}
Compact Output
datahub graphql --operation me --no-pretty
{"me":{"corpUser":{"urn":"urn:li:corpuser:datahub","username":"datahub"}}}
Integration Examples
Shell Scripts
#!/bin/bash
# Get all datasets for a platform
PLATFORM="mysql"
RESULTS=$(datahub graphql --operation searchAcrossEntities --variables "{
\"input\": {
\"query\": \"*\",
\"types\": [\"DATASET\"],
\"filters\": [{\"field\": \"platform\", \"values\": [\"$PLATFORM\"]}]
}
}" --no-pretty)
echo "Found $(echo "$RESULTS" | jq '.searchAcrossEntities.total') datasets"
CI/CD Pipelines
# GitHub Actions example
- name: Tag Important Datasets
run: |
datahub graphql --operation addTag --variables '{
"input": {
"resourceUrn": "${{ env.DATASET_URN }}",
"tagUrn": "urn:li:tag:Production"
}
}'
LLM Integration
The --format json
option makes the CLI perfect for LLM integration:
Benefits for AI Assistants
- Schema Understanding: LLMs can parse the complete GraphQL schema structure
- Query Generation: AI can generate accurate GraphQL queries based on available operations
- Type Validation: LLMs understand required vs optional arguments and their types
- Documentation: Rich descriptions and examples help AI provide better user assistance
Use Cases
# AI assistant gets complete schema knowledge
datahub graphql --list-operations --format json | ai-assistant process-schema
# Generate queries for user requests
datahub graphql --describe searchAcrossEntities --recurse --format json | ai-helper generate-query --user-intent "find mysql tables"
# Validate user input against schema
datahub graphql --describe createGroup --format json | validate-user-input
JSON Schema Benefits
- Structured data: No parsing of human-readable text required
- Complete type information: Includes GraphQL type wrappers (NON_NULL, LIST)
- Rich metadata: Descriptions, deprecation info, argument requirements
- Consistent format: Predictable structure across all operations and types
- Recursive exploration: Complete dependency graphs for complex types
Tips and Best Practices
- Start with Discovery: Use
--list-operations
and--describe
to understand available operations - Use --recurse: When learning about complex operations,
--describe --recurse
shows the complete type structure - LLM Integration: Use
--format json
when building AI assistants or automation tools - File-based Variables: For complex variables, use JSON files instead of inline JSON
- Error Handling: The CLI provides detailed error messages - read them carefully for debugging
- Schema Evolution: Operations and types can change between DataHub versions - use discovery commands to stay current
Troubleshooting
Common Issues
"Introspection not available": Use --schema-path
to point to local GraphQL schema files
"Operation not found": Check spelling and use --list-operations
to see available operations
"Type not found": Verify type name casing (GraphQL types are case-sensitive)
Environment issues: Ensure DataHub server is running and accessible at the configured endpoint