MLflow
Important Capabilities
Capability | Status | Notes |
---|---|---|
Descriptions | ✅ | Extract descriptions for MLflow Registered Models and Model Versions |
Detect Deleted Entities | ✅ | Optionally enabled via stateful_ingestion.remove_stale_metadata |
Extract Tags | ✅ | Extract tags for MLflow Registered Model Stages |
Concept Mapping
This ingestion source maps the following MLflow Concepts to DataHub Concepts:
Source Concept | DataHub Concept | Notes |
---|---|---|
Registered Model | MlModelGroup | The name of a Model Group is the same as a Registered Model's name (e.g. my_mlflow_model) |
Model Version | MlModel | The name of a Model is {registered_model_name}{model_name_separator}{model_version} (e.g. my_mlflow_model_1 for Registered Model named my_mlflow_model and Version 1, my_mlflow_model_2, etc.) |
Model Stage | Tag | The mapping between Model Stages and generated Tags is the following: - Production: mlflow_production - Staging: mlflow_staging - Archived: mlflow_archived - None: mlflow_none |
CLI based Ingestion
Starter Recipe
Check out the following recipe to get started with ingestion! See below for full configuration options.
For general pointers on writing and running a recipe, see our main recipe guide.
source:
type: mlflow
config:
# Coordinates
tracking_uri: tracking_uri
sink:
# sink configs
Config Details
- Options
- Schema
Note that a .
is used to denote nested fields in the YAML recipe.
Field | Description |
---|---|
base_external_url string | Base URL to use when constructing external URLs to MLflow. If not set, tracking_uri is used if it's an HTTP URL. If neither is set, external URLs are not generated. |
model_name_separator string | A string which separates model name from its version (e.g. model_1 or model-1) Default: _ |
registry_uri string | Registry server URI. If not set, an MLflow default registry_uri is used (value of tracking_uri or MLFLOW_REGISTRY_URI environment variable) |
tracking_uri string | Tracking server URI. If not set, an MLflow default tracking_uri is used (local mlruns/ directory or MLFLOW_TRACKING_URI environment variable) |
env string | The environment that all assets produced by this connector belong to Default: PROD |
stateful_ingestion StatefulIngestionConfig | Stateful Ingestion Config |
stateful_ingestion.enabled boolean | Whether or not to enable stateful ingest. Default: True if a pipeline_name is set and either a datahub-rest sink or datahub_api is specified, otherwise False Default: False |
The JSONSchema for this configuration is inlined below.
{
"title": "MLflowConfig",
"description": "Base configuration class for stateful ingestion for source configs to inherit from.",
"type": "object",
"properties": {
"env": {
"title": "Env",
"description": "The environment that all assets produced by this connector belong to",
"default": "PROD",
"type": "string"
},
"stateful_ingestion": {
"title": "Stateful Ingestion",
"description": "Stateful Ingestion Config",
"allOf": [
{
"$ref": "#/definitions/StatefulIngestionConfig"
}
]
},
"tracking_uri": {
"title": "Tracking Uri",
"description": "Tracking server URI. If not set, an MLflow default tracking_uri is used (local `mlruns/` directory or `MLFLOW_TRACKING_URI` environment variable)",
"type": "string"
},
"registry_uri": {
"title": "Registry Uri",
"description": "Registry server URI. If not set, an MLflow default registry_uri is used (value of tracking_uri or `MLFLOW_REGISTRY_URI` environment variable)",
"type": "string"
},
"model_name_separator": {
"title": "Model Name Separator",
"description": "A string which separates model name from its version (e.g. model_1 or model-1)",
"default": "_",
"type": "string"
},
"base_external_url": {
"title": "Base External Url",
"description": "Base URL to use when constructing external URLs to MLflow. If not set, tracking_uri is used if it's an HTTP URL. If neither is set, external URLs are not generated.",
"type": "string"
}
},
"additionalProperties": false,
"definitions": {
"DynamicTypedStateProviderConfig": {
"title": "DynamicTypedStateProviderConfig",
"type": "object",
"properties": {
"type": {
"title": "Type",
"description": "The type of the state provider to use. For DataHub use `datahub`",
"type": "string"
},
"config": {
"title": "Config",
"description": "The configuration required for initializing the state provider. Default: The datahub_api config if set at pipeline level. Otherwise, the default DatahubClientConfig. See the defaults (https://github.com/datahub-project/datahub/blob/master/metadata-ingestion/src/datahub/ingestion/graph/client.py#L19).",
"default": {},
"type": "object"
}
},
"required": [
"type"
],
"additionalProperties": false
},
"StatefulIngestionConfig": {
"title": "StatefulIngestionConfig",
"description": "Basic Stateful Ingestion Specific Configuration for any source.",
"type": "object",
"properties": {
"enabled": {
"title": "Enabled",
"description": "Whether or not to enable stateful ingest. Default: True if a pipeline_name is set and either a datahub-rest sink or `datahub_api` is specified, otherwise False",
"default": false,
"type": "boolean"
}
},
"additionalProperties": false
}
}
}
Code Coordinates
- Class Name:
datahub.ingestion.source.mlflow.MLflowSource
- Browse on GitHub
Questions
If you've got any questions on configuring ingestion for MLflow, feel free to ping us on our Slack.
Is this page helpful?