Skip to main content

Azure Data Factory

Azure Data Factory

For context on getting started with ingestion, check out our metadata ingestion guide.

Setup

To install this plugin, run pip install 'acryl-datahub[azure-data-factory]'.

Quickstart Recipe

source:
type: azure-data-factory
config:
# Required
subscription_id: ${AZURE_SUBSCRIPTION_ID}

# Authentication (service principal)
credential:
authentication_method: service_principal
client_id: ${AZURE_CLIENT_ID}
client_secret: ${AZURE_CLIENT_SECRET}
tenant_id: ${AZURE_TENANT_ID}

# Optional filters
factory_pattern:
allow: ["prod-.*"]

# Features
include_lineage: true
include_execution_history: false

env: PROD

sink:
type: datahub-rest
config:
server: "http://localhost:8080"

Authentication Methods

MethodConfig ValueUse Case
Service Principalservice_principalProduction
Managed Identitymanaged_identityAzure-hosted
Azure CLIcliLocal development
Auto-detectdefaultFlexible

Config Details

FieldRequiredDescription
subscription_idAzure subscription ID
credential.authentication_methodAuth method (default: default)
credential.client_idApp (client) ID for service principal
credential.client_secretClient secret for service principal
credential.tenant_idTenant (directory) ID
resource_groupFilter to specific resource group
factory_patternRegex allow/deny for factories
pipeline_patternRegex allow/deny for pipelines
include_lineageExtract lineage (default: true)
include_execution_historyExtract pipeline runs (default: false)
execution_history_daysDays of history, 1-90 (default: 7)
platform_instance_mapMap linked services to platform instances
envEnvironment (default: PROD)

Entity Mapping

ADF ConceptDataHub Entity
Data FactoryContainer
PipelineDataFlow
ActivityDataJob
DatasetDataset
Pipeline RunDataProcessInstance

Questions

If you've got any questions on configuring this source, feel free to ping us on our Slack. Incubating

Important Capabilities

CapabilityStatusNotes
Asset ContainersEnabled by default. Supported for types - Data Factory.
Detect Deleted EntitiesEnabled by default via stateful ingestion.
Platform InstanceEnabled by default.
Table-Level LineageExtracts lineage from Copy and Data Flow activities. Supported for types - Copy Activity, Data Flow Activity.
Not Azure Fabric

This connector is for Azure Data Factory (classic), not Azure Fabric's Data Factory. Azure Fabric support is planned for a future release.

Prerequisites

Authentication

The connector supports multiple authentication methods:

MethodBest ForConfiguration
Service PrincipalProduction environmentsauthentication_method: service_principal
Managed IdentityAzure-hosted deployments (VMs, AKS, App Service)authentication_method: managed_identity
Azure CLILocal developmentauthentication_method: cli (run az login first)
DefaultAzureCredentialFlexible environmentsauthentication_method: default

For service principal setup, see Register an application with Microsoft Entra ID.

Required Permissions

The connector only performs read operations. Grant one of the following:

Option 1: Built-in Reader Role (recommended)

Assign the Reader role at subscription, resource group, or Data Factory level.

Option 2: Custom Role with Minimal Permissions

Download datahub-adf-reader-role.json, update the {subscription-id}, then:

# Create custom role
az role definition create --role-definition datahub-adf-reader-role.json

# Assign to service principal
az role assignment create \
--assignee <service-principal-id> \
--role "DataHub ADF Reader" \
--scope /subscriptions/{subscription-id}

For detailed instructions, see Azure custom roles.

Lineage Extraction

Which Activities Produce Lineage?

The connector extracts table-level lineage from these ADF activity types:

Activity TypeLineage Behavior
Copy ActivityCreates lineage from input dataset(s) to output dataset
Data FlowExtracts sources, sinks, and transformation script
Lookup ActivityCreates input lineage from the lookup dataset
ExecutePipelineCreates pipeline-to-pipeline lineage to the child pipeline

Lineage is enabled by default (include_lineage: true).

How Lineage Resolution Works

For lineage to connect properly to datasets ingested from other sources (e.g., Snowflake, BigQuery), the connector needs to know which DataHub platform each ADF linked service corresponds to.

Step 1: Automatic Platform Mapping

The connector automatically maps ADF linked service types to DataHub platforms. For example, a Snowflake linked service maps to the snowflake platform.

View all supported linked service mappings
ADF Linked Service TypeDataHub Platform
AzureBlobStorageabs
AzureBlobFSabs
AzureDataLakeStoreabs
AzureFileStorageabs
AzureSqlDatabasemssql
AzureSqlDWmssql
AzureSynapseAnalyticsmssql
AzureSqlMImssql
SqlServermssql
AzureDatabricksdatabricks
AzureDatabricksDeltaLakedatabricks
AmazonS3s3
AmazonS3Compatibles3
AmazonRedshiftredshift
GoogleCloudStoragegcs
GoogleBigQuerybigquery
Snowflakesnowflake
PostgreSqlpostgres
AzurePostgreSqlpostgres
MySqlmysql
AzureMySqlmysql
Oracleoracle
OracleServiceCloudoracle
Db2db2
Teradatateradata
Verticavertica
Hivehive
Sparkspark
Hdfshdfs
Salesforcesalesforce
SalesforceServiceCloudsalesforce
SalesforceMarketingCloudsalesforce

Unsupported linked service types log a warning and skip lineage for that dataset.

Step 2: Platform Instance Mapping (for cross-recipe lineage)

If you're ingesting the same data sources with other DataHub connectors (e.g., Snowflake, BigQuery), you need to ensure the platform_instance values match. Use platform_instance_map to map your ADF linked service names to the platform instance used in your other recipes:

# ADF Recipe
source:
type: azure-data-factory
config:
subscription_id: ${AZURE_SUBSCRIPTION_ID}
platform_instance_map:
# Key: Your ADF linked service name (exact match required)
# Value: The platform_instance from your other source recipe
"snowflake-prod-connection": "prod_warehouse"
"bigquery-analytics": "analytics_project"
# Corresponding Snowflake Recipe (platform_instance must match)
source:
type: snowflake
config:
platform_instance: "prod_warehouse" # Must match the value in platform_instance_map
# ... other config

Without matching platform_instance values, lineage will create separate dataset entities instead of connecting to your existing ingested datasets.

Data Flow Transformation Scripts

For Data Flow activities, the connector extracts the transformation script and stores it in the dataTransformLogic aspect, visible in the DataHub UI under activity details.

Execution History

Pipeline runs are extracted as DataProcessInstance entities by default:

source:
type: azure-data-factory
config:
include_execution_history: true # default
execution_history_days: 7 # 1-90 days

This provides run status, duration, timestamps, trigger info, parameters, and activity-level details.

Advanced: Multi-Environment Setup

When to Use platform_instance

Use the ADF connector's platform_instance config to distinguish separate ADF deployments when ingesting from multiple subscriptions or tenants:

ScenarioRiskSolution
Single subscriptionNoneNot needed
Multiple subscriptionsLowRecommended
Multiple tenantsHigh - name collision riskRequired
# Multi-tenant example
source:
type: azure-data-factory
config:
subscription_id: "tenant-a-sub"
platform_instance: "tenant-a" # Prevents URN collisions
danger

Factory names are unique within Azure, but different tenants could have identically-named factories. Use platform_instance to prevent entity overwrites.

URN Format

Pipeline URNs follow this format:

urn:li:dataFlow:(azure-data-factory,{factory_name}.{pipeline_name},{env})

With platform_instance:

urn:li:dataFlow:(azure-data-factory,{platform_instance}.{factory_name}.{pipeline_name},{env})

For Azure naming rules, see Azure Data Factory naming rules.

CLI based Ingestion

Starter Recipe

Check out the following recipe to get started with ingestion! See below for full configuration options.

For general pointers on writing and running a recipe, see our main recipe guide.

# Example recipe for Azure Data Factory source
# See README.md for full configuration options

source:
type: azure-data-factory
config:
# Required: Azure subscription containing Data Factories
subscription_id: ${AZURE_SUBSCRIPTION_ID}

# Optional: Filter to specific resource group
# resource_group: my-resource-group

# Authentication (using service principal)
credential:
authentication_method: service_principal
client_id: ${AZURE_CLIENT_ID}
client_secret: ${AZURE_CLIENT_SECRET}
tenant_id: ${AZURE_TENANT_ID}

# Optional: Filter factories by name pattern
factory_pattern:
allow:
- ".*" # Allow all factories by default
deny: []

# Optional: Filter pipelines by name pattern
pipeline_pattern:
allow:
- ".*" # Allow all pipelines by default
deny: []

# Feature flags
include_lineage: true
include_column_lineage: false # Advanced: requires Data Flow parsing
include_execution_history: false # Set to true for pipeline run history
execution_history_days: 7 # Only used when include_execution_history is true

# Optional: Map linked services to platform instances for accurate lineage
# platform_instance_map:
# "my-snowflake-connection": "prod_snowflake"

# Optional: Platform instance for this ADF connector
# platform_instance: "main-adf"

# Environment
env: PROD

# Optional: Stateful ingestion for stale entity removal
# stateful_ingestion:
# enabled: true

sink:
type: datahub-rest
config:
server: "http://localhost:8080"


Code Coordinates

  • Class Name: datahub.ingestion.source.azure_data_factory.adf_source.AzureDataFactorySource

Questions

If you've got any questions on configuring ingestion for Azure Data Factory, feel free to ping us on our Slack.